PIGS
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 15747 | Accepted: 7034 |
Description
Mirko works on a pig farm that consists of M locked pig-houses and Mirko can't unlock any pighouse because he doesn't have the keys. Customers come to the farm one after another. Each of them has keys to some pig-houses and wants to buy a certain number of pigs. All data concerning customers planning to visit the farm on that particular day are available to Mirko early in the morning so that he can make a sales-plan in order to maximize the number of pigs sold. More precisely, the procedure is as following: the customer arrives, opens all pig-houses to which he has the key, Mirko sells a certain number of pigs from all the unlocked pig-houses to him, and, if Mirko wants, he can redistribute the remaining pigs across the unlocked pig-houses. An unlimited number of pigs can be placed in every pig-house. Write a program that will find the maximum number of pigs that he can sell on that day.
Input
The first line of input contains two integers M and N, 1 <= M <= 1000, 1 <= N <= 100, number of pighouses and number of customers. Pig houses are numbered from 1 to M and customers are numbered from 1 to N. The next line contains M integeres, for each pig-house initial number of pigs. The number of pigs in each pig-house is greater or equal to 0 and less or equal to 1000. The next N lines contains records about the customers in the following form ( record about the i-th customer is written in the (i+2)-th line): A K1 K2 ... KA B It means that this customer has key to the pig-houses marked with the numbers K1, K2, ..., KA (sorted nondecreasingly ) and that he wants to buy B pigs. Numbers A and B can be equal to 0.
Output
The first and only line of the output should contain the number of sold pigs.
Sample Input
3 33 1 102 1 2 22 1 3 31 2 6
Sample Output
7 题意:有一养猪场,有m个猪圈,给出每个猪圈中猪的数量,来了n个买主,每个买主手中有若干猪圈的钥匙,且给出每个买主想要买多少猪。问,最多能卖出多少头猪。 思路:网络流最大流问题。第二个最大流的题目,建图比较麻烦。下面说说我的建图方式。 1. 我们将所有买主当成结点。那么除了买主外,还需两个点,一个源点一个汇点。我称之为supers,supert. 2. 将源点与每个猪圈的第一个买主建边,如有重复的可并,实现的时候我是用flag[]数组标记钥匙是否第一次出现,如果是则可建边,否则看 step 3. 3. 如果不是第一次出现,说明在这个买主之前有买主买猪。这时,在这两个买主之间建边,权值(也就是容量)为INF。实现时是用nodes[]数组记录前一个买主。 4. 将每个买主连向汇点。容量为次买主要买的猪数。 我的建图方式就是这样。。建完图后用Dinic 求解。
1 /*====================================================================== 2 * Author : kevin 3 * Filename : PIGS.cpp 4 * Creat time : 2014-07-20 15:11 5 * Description : 6 ========================================================================*/ 7 #include8 #include 9 #include 10 #include 11 #include 12 #include 13 #define clr(a,b) memset(a,b,sizeof(a)) 14 #define MaxM 1005 15 #define MaxN 105 16 #define INF 0x7f7f7f7f 17 using namespace std; 18 struct Edge{ 19 int from,to,cap,flow; 20 }; 21 vector edges; 22 vector G[MaxN]; 23 bool vis[MaxN]; 24 int d[MaxN],cur[MaxN],supers,supert; 25 bool BFS() 26 { 27 clr(vis,0); 28 queue Q; 29 Q.push(supers); 30 d[supers] = 0; 31 vis[supers] = 1; 32 while(!Q.empty()){ 33 int x = Q.front(); Q.pop(); 34 int len = G[x].size(); 35 for(int i = 0; i < len; i++){ 36 Edge& e = edges[G[x][i]]; 37 if(!vis[e.to] && e.cap > e.flow){ 38 vis[e.to] = 1; 39 d[e.to] = d[x]+1; 40 Q.push(e.to); 41 } 42 } 43 } 44 return vis[supert]; 45 } 46 int DFS(int x,int a) 47 { 48 if(x == supert || a == 0) return a; 49 int flow = 0,f; 50 int len = G[x].size(); 51 for(int& i = cur[x]; i < len; i++){ 52 Edge& e = edges[G[x][i]]; 53 if(d[x] + 1 == d[e.to] && (f = DFS(e.to,min(a,e.cap-e.flow))) > 0){ 54 e.flow += f; 55 edges[G[x][i]^1].flow -= f; 56 flow += f; 57 a -= f; 58 if(!a) break; 59 } 60 } 61 return flow; 62 } 63 void AddEdge(int from,int to,int cap) 64 { 65 edges.push_back((Edge){ from,to,cap,0}); 66 edges.push_back((Edge){to,from,0,0}); 67 int m = edges.size(); 68 G[from].push_back(m-2); 69 G[to].push_back(m-1); 70 } 71 int Dinic(int s,int t) 72 { 73 int flow = 0; 74 while(BFS()){ 75 clr(cur,0); 76 flow += DFS(s,INF); 77 } 78 return flow; 79 } 80 int main(int argc,char *argv[]) 81 { 82 int n,m,keys,k; 83 int pighome[MaxM], //猪圈中猪的数量 84 nodes[MaxM], //前一个买主的信息 85 flag[MaxM]; //标记是否是买猪第一人 86 while(scanf("%d%d",&n,&m)!=EOF){ 87 clr(pighome,0); 88 clr(nodes,0); 89 clr(flag,0); 90 supers = 0; 91 supert = m+1; 92 for(int i = 1; i <= n; i++) 93 scanf("%d",&pighome[i]); 94 for(int i = 1; i <= m; i++){ 95 int sum = 0; 96 scanf("%d",&keys); //钥匙的数量 97 for(int j = 0; j < keys; j++){ 98 scanf("%d",&k); 99 if(!flag[k]){100 sum += pighome[k]; //合并重边101 flag[k] = 1;102 }103 else{104 if(nodes[k]){105 AddEdge(nodes[k],i,INF); //建买主之间的边106 }107 }108 nodes[k] = i;109 }110 AddEdge(supers,i,sum); //添加合并后的边111 int buy;112 scanf("%d",&buy);113 AddEdge(i,supert,buy); //建立买主到汇点的边114 }115 int ans = Dinic(supers,supert);116 printf("%d\n",ans);117 edges.clear();118 for(int i = 0; i < MaxN; i++)119 G[i].clear();120 }121 return 0;122 }